[Stanford/CS224W] 6. GNN(3) : Deep Learning for Graphs
스탠포드 강의를 듣고 정리한 내용입니다. 지난 포스팅에서는 그래프 신경망에 본격적으로 들어가기 전 딥러닝 개념에 대해서 빠르게 훑어보았습니다. 이번 포스팅에서는 신경망을 일반화하여 그래프에 적용해보겠습니다. Deep Learning for Graphs 이제 그래프와 딥러닝에 대해서 한번씩 배웠으니 두 개를 묶어서 보겠습니다. 이를 그래프 신경망, Graph Neural Network(GNN)이라고 부릅니다. 첫 번째로는 "Local Network Neighborhoods"에 대해 알아볼텐데요. 앞의 포스팅에서처럼 현재 노드는 이웃 노드들의 정보를 얻고, 그 정보를 합산해서 사용했습니다. 여기서도 똑같이 적용할 것입니다. 두 번째로는 이제 신경망을 이용하게 될텐데요. 이 신경망을 어떻게 정의하고, 학습시키..